Where neuroscience and dynamic system theory meet autonomous robotics: A contracting basal ganglia model for action selection

نویسندگان

  • Benoît Girard
  • Nicolas Tabareau
  • Quang-Cuong Pham
  • Alain Berthoz
  • Jean-Jacques E. Slotine
چکیده

Action selection, the problem of choosing what to do next, is central to any autonomous agent architecture. We use here a multi-disciplinary approach at the convergence of neuroscience, dynamical system theory and autonomous robotics, in order to propose an efficient action selection mechanism based on a new model of the basal ganglia. We first describe new developments of contraction theory regarding locally projected dynamical systems. We exploit these results to design a stable computational model of the cortico-baso-thalamo-cortical loops. Based on recent anatomical data, we include usually neglected neural projections, which participate in performing accurate selection. Finally, the efficiency of this model as an autonomous robot action selection mechanism is assessed in a standard survival task. The model exhibits valuable dithering avoidance and energy-saving properties, when compared with a simple if-then-else decision rule.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A basal ganglia inspired model of action selection evaluated in a robotic survival task.

The basal ganglia system has been proposed as a possible neural substrate for action selection in the vertebrate brain. We describe a robotic implementation of a model of the basal ganglia and demonstrate the capacity of this system to generate adaptive switching between several acts when embedded in a robot that has to "survive" in a laboratory environment. A comparison between this brain-insp...

متن کامل

A robot model of the basal ganglia: Behavior and intrinsic processing

The existence of multiple parallel loops connecting sensorimotor systems to the basal ganglia has given rise to proposals that these nuclei serve as a selection mechanism resolving competitions between the alternative actions available in a given context. A strong test of this hypothesis is to require a computational model of the basal ganglia to generate integrated selection sequences in an au...

متن کامل

Identification of an Autonomous Underwater Vehicle Dynamic Using Extended Kalman Filter with ARMA Noise Model

In the procedure of designing an underwater vehicle or robot, its maneuverability and controllability must be simulated and tested, before the product is finalized for manufacturing. Since the hydrodynamic forces and moments highly affect the dynamic and maneuverability of the system, they must be estimated with a reasonable accuracy. In this study, hydrodynamic coefficients of an autonomous un...

متن کامل

A Grey Box Neural Network Model of Basal Ganglia for Gait Signal of Patients with Huntington Disease

Introduction: Huntington disease (HD) is a progressive neurodegenerative disease which affects movement control system of the brain. HD symptoms lead to patient’s gait change and influence stride time intervals. In this study, we present a grey box mathematical model to simulate HDdisorders. This model contains main physiological findings about BG. Methods: We used artificial n...

متن کامل

A Biologically Inspired Computational Model of Basal Ganglia in Action Selection

The basal ganglia (BG) are a subcortical structure implicated in action selection. The aim of this work is to present a new cognitive neuroscience model of the BG, which aspires to represent a parsimonious balance between simplicity and completeness. The model includes the 3 main pathways operating in the BG circuitry, that is, the direct (Go), indirect (NoGo), and hyperdirect pathways. The mai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 21 4  شماره 

صفحات  -

تاریخ انتشار 2008